Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Selecting and Specifying a Railing System for your Building Project

This course provides an overview of the important factors - such as building codes, safety of use and fall protection, material selection, secure installation methods, and design - that must be considered when selecting or specifying a railing system for a commercial or residential project.

Learning Objective 1:
The student will learn to recognize the unique benefits of different railing materials with respect to durability and sustainability.

Learning Objective 2:
The student will learn to understand relevant building codes and standards related to the structural integrity and safety of a railing project.

Learning Objective 3:
The student will learn to identify common railing materials and finishes, and compare their performance in order to choose materials that best suit the structural requirements, style, and environment of the project.

Learning Objective 4:
The student will learn to distinguish between a variety of railing fabrication, assembly, and installation methods to ensure a safe and attractive railing design.

...Read More

Pushing the Boundaries of Form and Function

As architects and clients alike demand the creation of what’s next, design teams rely on new product systems and solutions to help them push the boundaries of form and function. This article profiles a few solutions that enable architects to create distinct building envelopes that don’t sacrifice on the efficient performance or sustainable design considerations that also occupy prominent spots on almost every client’s wish list.

HSW Justification:
This article explores solutions that enable architects to deliver a desired aesthetic that also performs efficiently and offers sustainable design benefits. For example, thermal barriers in the aluminum framing that hold the glazing in place allows architects to complete historic renovation projects that exceed thermal performance targets, without compromising the integrity of the historical aesthetic. Composite metal panel systems that support very unique applications and creative demands from design teams can also offer top-tier performance in terms of fire-, water-, and impact-resistance. Extruded aluminum trim beautifully meshes different types of exterior cladding, while helping the envelope to better manage moisture.

Learning Objective 1:
Explain how incorporating thermal barriers into the aluminum framing in the fenestration of the Crosstown Concourse helped the project become the world’s largest LEED Platinum historic rehabilitation project, while maintaining the integrity of its historic aesthetic.

Learning Objective 2:
Specify a composite metal panel system that offers the resistance to fire, water, and impact best-suited to the needs of a particular project.

Learning Objective 3:
List the aesthetic and sustainability-related benefits of specifying extruded aluminum trim on an exterior cladding.

Learning Objective 4:
Describe how the different finishes of precast concrete used in the façade of the Ale Asylum were reverse engineered to perfectly match the concept originally pitched and accepted by the city.

...Read More

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

The Implications of Light Pollution and the Impact of IDA

This course will discuss light pollution and its relation to the International Dark-Sky Association. After taking this course, individuals will know the impacts of light pollution as well as the difference between IDA and non-IDA lighting.

At the end of this course, participants will learn:

  1. To define IDA, light pollution, and related terms
  2. To identify the impacts of light pollution
  3. To demonstrate the difference between IDA and non-IDA lighting
  4. To assess the process of establishing IDA certification
...Read More

Permeable Interlocking Concrete Pavers

Permeable interlocking concrete pavers (PICP) have the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses, and can help maintain a site’s existing natural hydrologic function. This course discusses the goals of a PICP system and the materials used. It compares PICP with other stormwater management systems and describes the proper installation of a permeable paver system.

HSW Justification:
Permeable paver systems help prevent flooding that can contribute to injury, accidents, and property damage. Additionally, permeable paver systems properly installed help maintain more purified groundwater by providing a filter medium and detention reservoirs, reducing turbidity and pollution from runoff.

Learning Objective 1:
Students will be able to identify benefits and opportunities for using permeable pavers.

Learning Objective 2:
Students will be able to analyze the goals and criteria for using a permeable paver system.

Learning Objective 3:
Students will be able to list permeable paver materials and understand how to design different solutions

Learning Objective 4:
Students will be able to evaluate and compare permeable pavers to other traditional stormwater solutions.

Learning Objective 5:
Students will understand different installation procedures for permeable pavers.

...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

Achieving Beauty, Wellbeing, and Functionality in Design

Beauty, functionality, and wellness-enhancing can co-exist in design, with the right products. This article explores solutions that help architects achieve these important multi-benefits. Pavers that create beautiful outdoor spaces that are easy to maintain. Skylights that allow daylight and fresh air into the interior. Underlayment that improves acoustics and sound management, while protecting the integrity of the interior air quality. Each improves the functionality of the space and the wellness of the people in the built environment.

...Read More

Improve Occupant Wellness and Productivity with Solar Shading Fabrics

Solar shading devices, while available in numerous weaves, textures, and colors, go beyond contributing to the aesthetics of a space. Specified correctly, solar shading devices can maximize daylighting benefits and contribute to occupant well-being, productivity, and engagement, while mitigating the detrimental effects of UV rays and glare.

Learning Objective 1:
Students will understand the benefits daylighting, including the psychological and physiological well-being of occupants, as well as its drawbacks, such as glare and solar heat gain

Learning Objective 2:
Students will become familiar with the types of solar shading fabrics available for use in commercial settings and their components, including operating systems, weave, color, and openness factor, and the ways in which these contribute to the control of daylighting.

Learning Objective 3:
Students will explore the benefits of solar shading devices that extend beyond light management, such as sound mitigation, sustainability, and antimicrobial properties.

Learning Objective 4:
Students will determine how to select the right fabric for an application, taking into account aesthetics and room conditions

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

Design Building Envelopes That Support Healthy, Efficient Buildings

The building envelope separates the conditioned interior space from the environmental elements of the great outdoors, and this course explores a few solutions to equip the building envelope to defend the interior from nature's onslaughts, manage moisture, improve thermal performance, and admit daylight without glare.

HSW Justification:
Improper use of vapor barriers is one of the leading causes of moisture-related issues in buildings today. Those moisture related issues can include the growth of mold and mildew, which compromises the quality of the indoor environment and can even cause structural damage. Designing a proper air barrier system is crucial to moisture protection and protecting the thermal performance of the original design. This article provides best practices for designing an air barrier system that will function properly. We also discuss some solutions that can improve the functionality of the building envelope’s thermal performance. The course explores a translucent and an opaque solution that improve the thermal performance of the envelope, while offering additional benefits. Translucent wall panels allow diffuse, glare-free daylight into an interior, without compromising thermal efficiency at the opening and precast structural panels offer code-exceeding thermal performance and structural load-bearing capabilities.

Learning Objective 1:
Students will be able to explain why controlling air leakage in the building envelope is crucial to safeguarding the quality of the interior environment and protecting the energy efficiency of the building.

Learning Objective 2:
Students will learn to apply best practices to design an air barrier system that will effectively manage moisture intrusion and avoid moisture-related issues in the building envelope.

Learning Objective 3:
Students will be able to describe how translucent daylight panels allow daylight into the interior, mitigate glare and provide better thermal performance than many other glazing solutions.

Learning Objective 4:
Students will learn to use structural precast concrete panels to reduce the amount of perimeter steel needed on a project, while achieving and exceeding code-compliant thermal performance.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×