Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

Permeable Interlocking Concrete Pavers

Permeable interlocking concrete pavers (PICP) have the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses, and can help maintain a site’s existing natural hydrologic function. This course discusses the goals of a PICP system and the materials used. It compares PICP with other stormwater management systems and describes the proper installation of a permeable paver system.

HSW Justification:
Permeable paver systems help prevent flooding that can contribute to injury, accidents, and property damage. Additionally, permeable paver systems properly installed help maintain more purified groundwater by providing a filter medium and detention reservoirs, reducing turbidity and pollution from runoff.

Learning Objective 1:
Students will be able to identify benefits and opportunities for using permeable pavers.

Learning Objective 2:
Students will be able to analyze the goals and criteria for using a permeable paver system.

Learning Objective 3:
Students will be able to list permeable paver materials and understand how to design different solutions

Learning Objective 4:
Students will be able to evaluate and compare permeable pavers to other traditional stormwater solutions.

Learning Objective 5:
Students will understand different installation procedures for permeable pavers.

...Read More

The 60-Minute MBA for Design Professionals

In this session, we will learn the fundamentals of all successful AE firms and provide the basis for making well-grounded business decisions. We will learn how firms can transition from being professionals providing services, to highly tuned businesses that can identify the needs of the marketplace and create services and products that are appropriately priced and yield consistent and greater profits.

Rather than seeking out new projects that merely build upon your current skills, you will start from a business-thinking mindset, where processes that are critical to building a thriving firm are examined and constituted in your firm. We will explore the importance of data within an architect firm and demonstrate how careful collection and interpretation can lead your firm into more exciting and profitable territory.

Following are the course's Learning Objectives:

  1. Identify why a “business-thinking” mindset is of utmost importance for service professionals
  2. Explain best practices for implementing a metrics-oriented leadership system
  3. Summarize how data-based performance management drives smarter business decisions
  4. Analyze how profitability drives growth rather than being merely a result
  5. Reframe your firm as a platform that enables you to achieve your business and personal goals
...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

HSW Justification:
“Increased evidence shows that indoor environmental conditions substantially influence health and productivity. Building services engineers are interested in improving indoor environments and quantifying the effects. Potential health and productivity benefits are not yet generally considered in conventional economic calculations pertaining to building design and operation. Only initial costs plus energy and maintenance costs are typically considered. A few sample calculations have also shown that many measures to improve indoor air environment are cost-effective when the health and productivity benefits resulting from an improved indoor climate are included in the calculations (Djukanovic et al. 2002, Fisk 2000, Fisk et al. 2003, Hansen 1997, van Kempski 2003, Seppanen and Vuolle 2000, Wargocki, 2003.) This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the built environment.

Learning Objective 1:
Explain how air circulation improves thermal comfort and alertness.

Learning Objective 2:
Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

Learning Objective 3:
Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

Learning Objective 4:
Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

Learning Objective 5:
Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Pushing the Boundaries of Form and Function

As architects and clients alike demand the creation of what’s next, design teams rely on new product systems and solutions to help them push the boundaries of form and function. This article profiles a few solutions that enable architects to create distinct building envelopes that don’t sacrifice on the efficient performance or sustainable design considerations that also occupy prominent spots on almost every client’s wish list.

HSW Justification:
This article explores solutions that enable architects to deliver a desired aesthetic that also performs efficiently and offers sustainable design benefits. For example, thermal barriers in the aluminum framing that hold the glazing in place allows architects to complete historic renovation projects that exceed thermal performance targets, without compromising the integrity of the historical aesthetic. Composite metal panel systems that support very unique applications and creative demands from design teams can also offer top-tier performance in terms of fire-, water-, and impact-resistance. Extruded aluminum trim beautifully meshes different types of exterior cladding, while helping the envelope to better manage moisture.

Learning Objective 1:
Explain how incorporating thermal barriers into the aluminum framing in the fenestration of the Crosstown Concourse helped the project become the world’s largest LEED Platinum historic rehabilitation project, while maintaining the integrity of its historic aesthetic.

Learning Objective 2:
Specify a composite metal panel system that offers the resistance to fire, water, and impact best-suited to the needs of a particular project.

Learning Objective 3:
List the aesthetic and sustainability-related benefits of specifying extruded aluminum trim on an exterior cladding.

Learning Objective 4:
Describe how the different finishes of precast concrete used in the façade of the Ale Asylum were reverse engineered to perfectly match the concept originally pitched and accepted by the city.

...Read More

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1:
Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2:
Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3:
Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4:
Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

 

...Read More

Achieving Beauty, Wellbeing, and Functionality in Design

Beauty, functionality, and wellness-enhancing can co-exist in design, with the right products. This article explores solutions that help architects achieve these important multi-benefits. Pavers that create beautiful outdoor spaces that are easy to maintain. Skylights that allow daylight and fresh air into the interior. Underlayment that improves acoustics and sound management, while protecting the integrity of the interior air quality. Each improves the functionality of the space and the wellness of the people in the built environment.

...Read More

Discussing Circadian Lighting and the WELL Building Standard with Marty Brennan

This course will explore the requirements, challenges, and best practices for achieving the Circadian Lighting Design Feature L03 in the WELL Building Standard version 2.0.

HSW Justification:
The purpose of this feature in the WELL Building Standard is to provide building occupants with an appropriate exposure to the type of light that can maintain circadian health and align their circadian rhythm with the day-night cycle. The support of the circadian system has been shown to have tremendous health benefits to the people in the space.

Learning Objective 1:
Explain the relationship between spectral power distribution (SPD) and circadian lighting.

Learning Objective 2:
Summarize the circadian lighting feature requirements in the WELL Building Standard v2.

Learning Objective 3:
Describe a few best practices that can help architects to meet this challenging circadian lighting criteria.

...Read More

Controlled and Connected Luminaires and Design Integration

Program: The Art and Technology of Lighting

This course will review the components and uses of connected luminaires, their specification and the standards and protocols involved in current lighting controls application. Further, this course will review the emergence of the Internet of things, and how it will impact future lighting controls application.Understand the definition, components and function of a connected luminaire.

Learning Objective 1:
Understand the definition, components and function of a connected luminaire.

Learning Objective 2:
Understand how connected lighting systems interact with the Internet of Things (IoT).

Learning Objective 3:
Understand the basic components of a lighting control system and uses with LED technology.

Learning Objective 4:
Understand the specification of connected luminaire systems.

AIA Course Number FP2018-D

 

...Read More

Performance Fabrics in Sustainable Design

This course aims to help educate the designer about what performance fabrics are, the content of various fabrics, how they work, and the benefits to a sustainable design in meeting and maximizing your goals of occupant health, safety, well-being, and sustainability. Windows, views, and openings in buildings present the classic battle between form and function. The designer naturally wants the building’s occupants to enjoy views and light, but the solar heat gain from these openings can wreak havoc on sustainable goals. Sophisticated and high-performing solar control fabrics can help reconcile the form and function of light, views, and sustainability.

HSW Justification:
Substantially all of this course is dedicated to a discussion of the health, safety and welfare aspects of performance fabrics through their appropriate specification, their fabrics' chemical composition, their proper use, their ability to meet safety and performance standards, and their aesthetic contribution.

Learning Objective 1:
The student will learn how to analyze shading fabrics for solar light management including energy reduction, glare and outward visibility, using published shading coefficient data.

Learning Objective 2:
The student will be able to list certification requirements for indoor air quality, anti-bacterial protection, flame retardancy, and environmental regulations.

Learning Objective 3:
The student will be able to identify fabric composition options with an emphasis on sustainable design.

Learning Objective 4:
The student will be able to apply their knowledge of performance fabric features to unique, real-world applications in healthcare, hospitality, government, business, and residential projects.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×