Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Achieving Beauty, Wellbeing, and Functionality in Design

Beauty, functionality, and wellness-enhancing can co-exist in design, with the right products. This article explores solutions that help architects achieve these important multi-benefits. Pavers that create beautiful outdoor spaces that are easy to maintain. Skylights that allow daylight and fresh air into the interior. Underlayment that improves acoustics and sound management, while protecting the integrity of the interior air quality. Each improves the functionality of the space and the wellness of the people in the built environment.

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

Reducing Fire Risk at the Perimeter of High Rise Structures

High rise fires are not new to us. In fact, we have seen an increase in fire incidents in Asia, Europe, and the Middle East in the last 5-10 years that have amplified awareness on fire safety performance of taller structures. High rise buildings present a greater risk with an increased number of occupants that have a limited means of escape in the event of a fire. That is why the time element for containing a fire is so critical. Also, as we have seen in actual fires, vertical fire spread at the exterior façade can rapidly overwhelm fire fighters means of interceding the fire from ground level. As the fire accelerates and upward spread progresses, it often reaches a height beyond the reach of fire services water streams. That is why containing a fire and preventing it from spreading vertically is so critical for both occupant and first responder safety.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

HSW Justification:
“Increased evidence shows that indoor environmental conditions substantially influence health and productivity. Building services engineers are interested in improving indoor environments and quantifying the effects. Potential health and productivity benefits are not yet generally considered in conventional economic calculations pertaining to building design and operation. Only initial costs plus energy and maintenance costs are typically considered. A few sample calculations have also shown that many measures to improve indoor air environment are cost-effective when the health and productivity benefits resulting from an improved indoor climate are included in the calculations (Djukanovic et al. 2002, Fisk 2000, Fisk et al. 2003, Hansen 1997, van Kempski 2003, Seppanen and Vuolle 2000, Wargocki, 2003.) This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the built environment.

Learning Objective 1:
Explain how air circulation improves thermal comfort and alertness.

Learning Objective 2:
Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

Learning Objective 3:
Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

Learning Objective 4:
Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

Learning Objective 5:
Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Create Intelligent Buildings with Networked Lighting to Improve Tenant Overall Well-Being

This session will present how IoT lighting can be a fundamental platform for smart environments.  Well planned building integration allows a flexible, scalable lighting system to collect the data that ultimately brings more value to the building owner.

At the end of this course, participants will learn:

  1. Define IDA, light pollution, and related terms
  2. Identify the impacts of light pollution
  3. Demonstrate the difference between IDA and non-IDA lighting
  4. Assess the process of establishing IDA certification
...Read More

An Introduction to Custom Balanced Doors

This course will introduce you to the custom balanced door. You will learn about the system components and the differences between a Balanced door and a conventional hinged or pivoted swing door. Then we'll take a closer look at how a balanced door works in an installation. Finally you'll learn about the specific engineering requirements needed to accommodate balanced doors.

HSW Justification:
Balanced doors are safer than conventional doors because they require a smaller interference zone on the sidewalk. Also, they open with ease which benefits smaller people, weak or disabled persons, and the elderly. The majority of this course deals with those benefits and with the mechanical features of the door that make these health and safety benefits possible.

Learning Objective 1:
Understand the differences between the balanced door and a conventional hinged or pivoted swing door

Learning Objective 2:
Know specific requirements for ADA handicap guidelines LO 5: Understand how the balanced door interfaces with power operation LO 6: Understand specific engineering requirements to accommodate balanced doors

Learning Objective 3:
Understand what components make up a typical balanced door system

Learning Objective 4:
Know how the design concept works in an actual installation

...Read More

The History and Impact of Synthetic Turf

This course is designed to teach the history of synthetic turf, its application in water and energy conservation, pollution abatement, sustainable design, and its versatility in numerous landscaping applications and designs. Participants will become knowledgeable about synthetic turf and innovative applications that could be applied to their residential and commercial projects. The most current technological advances in the industry and the positive role synthetic turf plays in the environment.

Learning Objective 1:
Students will gain an increased awareness of the positive environmental impact of synthetic turf on water use, reduced energy demand and reduction of use of fossil fuels, reduced chemical application, and resulting reduction of water and noise pollution.

Learning Objective 2:
Students will become more informed on the newest synthetic turf material technologies available, including the use of soy based materials, as well as how the proper application of infills and proper material selection can benefit the health and safety of athletes.

Learning Objective 3:
Students will be more knowledgeable about the history and evolution of the technology and of landscaping and sports applications using synthetic turf.

Learning Objective 4:
Students will better understand the versatility of synthetic turf and its many uses in sustainable landscape design.

 

...Read More

924 & 1008 Lighting Controls

NFPA 70, the national electrical code details 2 different types of Emergency Lighting Control Devices—devices that guarantee that life safety lighting will be on at desired illumination levels in the event of an emergency. This course will help mitigate the confusion regarding the specification of these devices and understand their applications in the real world.

Prerequisite Knowledge: Knowledge of life safety systems, particularly a high-level understanding of the purpose of emergency lighting inverters and generators. In particular, ISO-1001/ISO-1002 would be a perfect lead into this course.

HSW Justification: This deals with life safety, the safe egress, and illumination of buildings in the event of an emergency.

Learning Objective 1:
Understand the background technology where ALCR and BCELTS devices need to be deployed.

Learning Objective 2:
Learn the difference between the technologies and reviews how they sit within one-line diagrams.

Learning Objective 3:
Understand some of the real world tradeoffs between the device types as it relates to wiring, proximity and ease of testing.

Learning Objective 4:
Understand the integration of lighting controls with the different types of ELCDs and review some tricks for how to reduce costs in systems.

 

...Read More

Insulated Metal Panels

This course will cover the role of IMPs as an effective building envelope in terms of air and water infiltration and a thermal barrier. Additionally, the course will review how proper insulation is critical to performance, as well the many other attributes provided by IMPs whether employed as new construction or retrofits.

HSW Justification:
This is a re-registration of course number K2009N to run on our platform

Learning Objective 1:
Identify the role of prefabricated insulated metal panels (IMPs) as an all-in-one water and air barrier enclosure with continuous insulation.

Learning Objective 2:
Compare the construction benefits that IMPs deliver via a more simplified, cost-effective, and time-efficient erection process in addition to enhanced safety and less required manpower in the field.

Learning Objective 3:
Describe the key full building enclosure, structural, and fire-performance attributes of IMPs.

Learning Objective 4:
Explore the versatility and performance attributes of IMPs for retrofits and recladding.

NOTE:

A supplemental piece of reading material has been included with this course in order to fulfill the NCARB requirement for course content and duration. You will find some answers to quiz questions in both the video and print portion of the course content.

To begin the course, scroll down and download the red highlighted PDF file.

...Read More

Pattern Mapping for Lasting Design

A Pattern Map evaluates a pattern on two key elements: structure and nature. This course explains why these two elements affect how we recognize and respond to pattern and examines ways to bridge architecture and nature by using architectural panel systems with patterned openings, and provide a sense of space, privacy, shade, or camouflage with cladding, screens, or railings.

HSW Justification:
Pattern improves the physical emotional and social well-being of those who experience the space. It protects those who occupy the space, and pattern enables equitable access, elevates human experience, encourages social interaction and benefits the built environment.

Learning Objective 1:
Students will learn to compare patterns on a patten map

Learning Objective 2:
Students will learn to explain how different characteristics of a pattern functionally and aesthetically impact the visual space.

Learning Objective 3:
Students will learn how to select the openness factor and base material that will help meet project objectives.

Learning Objective 4:
Students will learn how to apply HSW Best Practices to provide privacy, facades, camouflage, shade, or railings with architectural panels with patterned openings.

See more videos from Parasoleil here

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×